Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The first known occurrence of rhyolite along the submarine segments of the mid-ocean ridge (MOR) system was discovered on Alarcon Rise, the northernmost segment of the East Pacific Rise (EPR), by the Monterey Bay Aquarium Research Institute in 2012. Zircon trace element and Hf and O isotope patterns indicate that the rhyolite formed by extreme crystal fractionation of primary mid-ocean ridge basalt (MORB) sourced from normal to enriched MOR mantle with little to no addition of continental lithosphere or hydrated oceanic crust. A large range in zircon ɛHf spanning 11 ɛ units is comparable to the range of whole rock ɛHf from the entire EPR. This variability is comparable to continental granitoids that develop over long periods of time from multiple sources. Zircon geochronology from Alarcon Rise suggests that at least 20 kyr was needed for rhyolite petrogenesis. Grain-scale textural discontinuities and trace element trends from zircon cores and rims are consistent with crystal fractionation from a MORB magma with possible perturbations associated with mixing or replenishment events. Comparison of whole rock and zircon oxygen isotopes with modeled fractionation and zircon-melt patterns suggests that, after they formed, rhyolite magmas entrained hydrated mafic crust from conduit walls during ascent and/or were hydrated by seawater in the vent during eruption. These data do not support a model where rhyolites formed directly from partial melts of hydrated oceanic crust or do they require assimilation of such crust during fractional crystallization, both models being commonly invoked for the formation of oceanic plagiogranites and dacites. A spatial association of highly evolved lavas (rhyolites) with an increased number of fault scarps on the northern Alarcon Rise might suggest that low magma flux for ~20 kyr facilitated extended magma residence necessary to generate rhyolite from MORB.more » « less
-
Abstract Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.more » « less
-
The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well-mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower-silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first-order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust.more » « less
An official website of the United States government
